1) Prove that function of complex argument $z=x+\mathrm{i}y$
\begin{equation}
f_1(z)=\frac{\sin{z}}{z}
\end{equation}
obey a condition:
\begin{equation}
|f_1(z)|\leq c_1\mathrm{e}^{\beta_1|y|}
\end{equation}
where $c_1$ and $\beta_1$ are constant. Prove that $\beta_1=1$.
2) Prove that function of complex argument $z=x+\mathrm{i}y$
\begin{equation}
f_2(z)=J_0(z)
\end{equation}
obey a condition:
\begin{equation}
|f_2(z)|\leq c_2\mathrm{e}^{\beta_2|y|}
\end{equation}
where $c_2$ and $\beta_2$ are constant. Prove that $\beta_2=1$.
3) Prove that function of complex argument $z=x+\mathrm{i}y$
\begin{equation}
f_3(z)=f(a,b,\mu,\nu,m,z)
\end{equation}
obey a condition:
\begin{equation}
|f_3(z)|\leq c_3\mathrm{e}^{\beta_3|y|}
\end{equation}
where $c_3$ and $\beta_3$ are constant. Besides $\beta_3$ have to be found.
(Main function $f_3(z)$ which have to studied will be present after problem 3 is solved)